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Abstract

Mode I steady-state dynamic crack growth in rate-dependent viscoplastic solids containing damage, under small
scale yielding conditions, is analyzed based on a modified cohesive zone model. A multi-scale approach is used to
describe the entire non-linear zone consisting of a plastic region and a damage region, each of which has its own
constitutive law. Traction in the damage region is characterized by a softening power-law, in terms of the ultimate
strength, a softening index and a rate sensitivity factor. In the plastic region, the cohesive law is assumed to be both
strain hardening and rate dependent. The critical crack opening displacement at the physical crack-tip controls crack
growth. The governing integral equations are derived and solved by a collocation method combined with associated
boundary conditions. Numerical results are presented for the traction and opening profiles along the cohesive zone, the
fracture energy and lengths of the damage and non-linear zones at different crack speeds and for different material
parameters. The importance of factors, such as material softening, plastic deformation, crack speed and viscosity, is
identified by parametric studies. In addition, the competition of plastic flow and material damage, and its effect on crack
growth, are discussed.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Many engineering materials display so-called ‘strain softening’ behavior as microstructures evolve. For
instance, ductile crack growth in metals is usually accompanied by a decrease in strength caused by
the nucleation and growth of voids. Cracked specimens have, at least locally, a non-linear characteristic
zone in the crack-tip vicinity. Material elements in this zone cannot sustain further load. This phenome-
non is also common in other materials such as polymers, coarse-grained ceramics, and fiber composite
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materials. Strictly speaking, conventional macroscopic continuum descriptions of this highly deformed
zone are not appropriate. Barenblatt (1959), Dugdale (1960) and Bilby et al. (1963) introduced a cohe-
sive zone concept by assuming a relationship between the cohesive force and the pseudo opening dis-
placement. However, the lack of strain-softening response in the B-D (Bareblatt—-Dugdale) model results in
stress divergence and discontinuity at the receding edge of the cohesive zone, as shown by Glennie (1971).
Hence, correct modeling of the fracture behavior of these materials depends very much on the inti-
mate knowledge of their failure micro-mechanisms and certain internal structures. Stable crack growth in
strain-softening materials has been studied for fiber reinforced materials by Foote et al. (1986) and Cui
(1995), for laminated composites by Wnuk and Kriz (1985), for rate-dependent materials by Fager et al.
(1991) and for ductile materials by Tvergaard and Hutchinson (1992), Zhang and Gross (1995) and Yuan
et al. (1996).

The cohesive zone, with its own constitutive requirement, is confined to a line segment or a narrow strip
ahead of the crack-tip. Use of a cohesive zone has successfully captured some main features of fracture
behavior such as vanishing stress singularity, finite fracture process zone and increasing toughness at high
crack growth rates. Although recent work by Costanzo and Walton (2002) did consider the dynamic crack
growth in materials with coupled thermal and mechanical responses, few studies addressed the co-existence
of different mechanisms inside the cohesive zone, such as strain-hardening plastic flow and strain-softening
void growth and coalescence. Clearly, material points ahead of the crack-tip are either cohesive or deco-
hesive. Once in a decohesive state, they cannot return to their original cohesive state. In fact, most studies
based on the original B-D model do not separate the damage zone or the fracture process zone from the
entire non-linear region, even though a combined plastic/damage cohesive law was presented by Zhang and
Gross (1995). Thus, it is difficult to discern macroscopic behaviors caused by damage from those by plastic
deformation. Many experimental results (e.g., Yuan et al. (1996) and cited references therein) have shown
that the damage zone in a ductile material is restricted to a very small region near the physical crack-tip.
However, this small damage zone can cause a considerable increase in the fracture resistance. In some
extreme cases, there is no damage zone, only plastic flow. Hence, it is necessary to examine the cohesive
zone from a multi-scale point of view, especially for a small damage zone lying between the crack-tip and
the plastic zone. Wnuk (1983) modified the B-D model by using two zones so as to predict the stability of
crack growth based on their relative lengths, although the transition from plastic to damage zone is ex-
pected to be gradual. The two extremes, very brittle and very ductile, can be described as two limiting cases
corresponding to a fully damage zone and a pure plastic zone ahead of the crack-tip, respectively. Con-
sideration of crack growth stability based on length scales has been highlighted in recent works for new
materials with coupled mechanisms (Cox and Marshall, 1994; Gao et al., 1997). Of course, the need to
adopt a two-zone cohesive model also lies in the difficulty in developing a unified model covering all stages
of material deformation.

Fracture characteristics for ductile materials can be represented by a combined cohesion—decohesion
curve. Fig. | shows the typical curve for a unit cell subjected to uniaxial straining. It is always considered as
a model in the cohesive zone of a Mode I crack. Material elements experience decohesion when the crack
opening J > J; (the opening corresponding to the peak cohesive stress) while cohesion by plastic defor-
mation takes place when 6 < d;. In addition, when the cohesive stress p < gy (yield strength) and for small
opening displacement, there is a non-dissipative regime. However, the energy dissipated in the non-
dissipative zone is not considered in this paper. While ductile fracture is different from failure of piezo-
electric ceramics with coupled electrical-mechanical behaviors (Gao et al., 1997), damage and plastic
deformation can also be taken as two different deformation mechanisms, as stated above. Plastic flow by
itself has some special characteristics such as strain hardening and elastic unloading, and post-peak
localization caused by void growth can limit plastic deformation. Crack growth in ductile materials is
governed by the competition between damage and plastic flow. Both contribute to the fracture energy, but
compete against each other. Two critical parameters in the cohesive laws control the fracture process. One
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Fig. 1. Typical curves for the cohesion—decohesion behaviors of ductile materials based on the unit-cell model subject to uniaxial stress.

is the cohesive strength op in Fig. 1, which is the peak stress at instability under load-controlled condition.
The higher the cohesive strength, the smaller is the fracture process zone as found by Tvergaard and
Hutchinson (1992). Another parameter is the shape of the cohesion—-decohesion curve. The curve shape
influences the ratio of the height of the process zone to its length, as observed by Andersson and Bergkvist
(1970).

The cohesion—decohesion curve is also affected by some macroscopic parameters such as crack-tip
constraints resulting from specimen geometry and loading mode. The constraint effect has been dealt with
in two ways: macro-mechanical and micro-mechanical. Macro-mechanical approaches by Hancock et al.
(1993) and O’Dowd and Shih (1991) used additional parameters, like 7-stress or Q-term, to identify
the constraint effect. Alternatively, the curves from the unit-cell model under multi-axial tension can ap-
proximately reflect the real situation of void growth ahead of the crack-tip. Micro-mechanical ap-
proaches have established a range of damage models, such as the modified Gurson model (see Tvergaard,
1990), to account for the effect of hydrostatic stresses. A negative T-stress can extend the value of ¢;, and
hence, low constraints can make the process zone deeply embedded inside the plastic region, as argued by
Broberg (1999). Recent work by Wnuk and Legat (2002) has included a triaxility-dependent cohesive zone
model to assess fracture work and cohesive stress distributions because low constraint can reduce the value
of ap.

It is anticipated that introduction of a two-region cohesive zone model would be reasonable to generalize
the essential ideas of Barenblatt (1959) and Dugdale (1960), though the corresponding non-linear analysis
becomes more difficult. As a first step to understand failure mechanisms, some simple forms of cohesive
constitutive laws are used. While the two-zone model is more difficult to judge than the original B-D model,
the results will shed new lights on our understanding of the crack problem.

The issue of Mode I steady-state dynamic crack growth in rate-dependent viscoplastic materials
containing damage under small scale yielding, is revisited based on a two-region cohesive zone model. This
paper is organized as follows. In Section 2, formulation of steady-state dynamic growth of a plane-
strain mode I crack under small scale yielding conditions is given and the cohesive laws in the damage zone
and the plastic zone are provided. This is followed in Section 3 by derivations of the governing equa-
tions based on the balance of tractions along the cohesive zone. The numerical method used to solve
the integral equation is given in Section 4 and numerical results for a system of material parameters and
crack growth rates are presented in Section 5 for different crack speeds. Concluding remarks are given in
Section 6.
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2. Statement of the problem

Consider the problem of a steady-state plane strain mode I semi-infinite crack spreading dynamically in
an isotropic elastic medium under small scale yielding conditions. The crack lies on the plane y = 0 and
extends in the x-direction at a constant crack speed V' with the origin of the coordinates moving with the
crack-tip. The singular opening stresses ahead of the crack-tip can be characterized by a Mode I dynamic
stress intensity factor K, in the form

Ko
o) = = (1)
so that K, represents the level of external loads.

To account for non-linearity in viscoplastic materials, we resort to the cohesive zone model as em-
phasized in the previous section. Ahead of the crack-tip, there is a cohesive zone, that is, a non-linear region
across which the cohesive forces can be translated. The geometric configuration of the model is schemati-
cally illustrated in Fig. 2. The entire cohesive zone is divided into two regions to avoid inconsistency with
experimental observations. There are different micro-mechanisms operative in these two regions. One is
void-damage softening and the other is plastic deformation hardening associated with mobile dislocations.
Elastic behavior is maintained outside of the non-linear region. The cohesive-zone length is L. Region
0 < x < D represents the damage zone, the length of which is D. Region D < x < L denotes the active plastic
zone in which a hardening traction law is assigned.

The crack is treated with a cohesive stress p(x) along the entire line segment of the effective crack. The
opening displacement 6 of the cohesive zone, corresponding to the responses of the cohesive stress, is
defined as:

5()() = ”y(xa +0) - uy(x7 _O) (2)

in which u, is the vertical displacement along the crack-face.

To obtain the mechanical response at given loads, a relation between the traction and the separation
should be provided. In the remainder, a specified constitutive relation for power-law strain softening and
rate sensitivity is chosen for the damage zone [0, D]. Its rate-independent form is illustrated in Fig. 3. We
begin with a class of viscous cohesive laws in the form:

0
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Fig. 2. Schematic of a cohesive zone ahead of a crack tip and the coordinate system.
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Fig. 3. Traction-separation law for a damaged material.

where m is softening index, f,, viscous coefficient due to inertia effect, J. critical opening displacement, a,,
ultimate tensile strength for the damage zone, and § rate of opening which relates to § through the universal
relationship for steady crack growth at a subsonic speed V:

. 06
d=-r= (4)

A hardening traction—separation relation is assigned to the plastic zone [D, L]. Its rate-independent form
is shown in Fig. 4. The detailed expression is written as

p0) o5 ) (14,9 (5)

where n is hardening exponent, o, ultimate strength and f8, viscosity for plastic deformation. It is noted
that the cohesive law in the plastic zone is also rate dependent, but with a different viscosity coefficient
because of different mechanisms. This rising stress regime corresponds to dynamic dislocation movement. n
can vary under the condition of m > n. It must be emphasized that f,, and f, highlight the effect of material
inertia. In their absence, the above laws are reduced to their rate-independent forms. For rate-dependent

n<0.1

516,

Fig. 4. Traction—separation law for plastic flow.
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materials, the maximum cohesive stress o, depends not only on the cohesive material parameters in Egs. (3)
and (5), but also on the crack propagation rates from Eq. (4).

Then, we must decide on the boundary conditions and interface condition between the two zones.
Material elements at the physical crack-tip lose their load-carrying ability. Therefore, the failure criterion is
defined by:

S(x=0) = o, (6)

It is assumed that the fracture process is dominated by non-linear deformation, that is, the area beneath
the non-dissipative part in the cohesion—decohesion curve shown in Fig. 1 is extremely small. To meet this
requirement, the crack opening at the leading edge should be extremely small. The traction at the leading
edge is not necessarily zero and it may be comparable to its counter-parts in the plastic and damage zones.
Therefore, it is assumed that

px=L)=0g and 6(x=L)—0 (7)

where og is minimum cohesive stress for occurrence of plastic deformation and it is dependent on the 7-
stress and loading modes. Considering Egs. (5) and (7), a very small value of n (=0.1) should be used.

In addition, the stress and opening continuity should be maintained at the interface between two zones.
Thus

plx=D—0)=p(x=D+0) (8)

S(x=D—0)=0d(x=D+0) 9)

The problem can also be studied from the energetic viewpoint. Energy release rate can be obtained by
evaluating the dynamic J-integral along a remote contour I'. enclosing the whole cohesive zone I'g + Iy, as
shown in Fig. 5. I'; and I'q denote the plastic and damage segments. It should be pointed out that the
energy flux must also include the non-dissipative part, that is, the segment with p < gg. In accordance with
Griffith’s theory, the non-dissipative cohesive stress yields the intrinsic fracture energy dissipated at a point-
like sharp tip. However, the contribution from this non-dissipative stress is extremely small based on Eq.
(7). The non-dissipative segment should be extremely small and it is not taken into account in this paper.

Fig. 5. J-integral contours for evaluating local and global energy fluxes.
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Thus, the energy flux is approximately the rate of energy dissipated in the dissipative cohesive zone. From
Freund (1990) the energy flux for steady-state dynamic crack growth is defined as

E= V/ [(U—i—T)nl - a,-jnj% ds (10)

in which U is strain energy density, 7 is kinetic energy density, »; is normal unit of the contour and g,; and u;
are stress tensor and displacement vector, respectively.

To facilitate discussion, the ratio of energy flux to the crack speed is used, instead of the energy flux itself.
Eq. (10) is rewritten as £ = VE., in which E,, is interpreted as the available energy release rate for the
system. Since the linearly elastic material outside the cohesive zone is energy-conservation, the value of
energy flux can be evaluated along the cohesive zone. Therefore, we have

E:/O p(x)é(x)dx:—r//o p(x)a%S‘)dx (11)

We can also define the required energy release rate E; for crack propagation, or called as the fracture energy
dissipated in the cohesive zone. Since elastic energy is fully converted to fracture energy in the system, the
required energy release rate must be identified with the available energy release rate. Thus, the fracture
energy can be written as

s [ (][ oS

To compare the contributions from the damage and plastic zones, we denote E4 and E}; the damage and
plastic parts of the fracture energy, respectively.

3. Governing equations

According to dislocation theory, the dislocation density &(x) is defined as the gradient of the jump of the
crack profile, i.e., £(x) = —00(x)/dx, and the crack opening displacement along the cohesive zone is given
by

S(x) = /Li(t)dt-i-é(L) (13)

in which §(L) is the opening at the leading edge of the non-linear zone. At the physical crack-tip, the critical
crack opening displacement is

5, = /Lé(t)dt+5(L) (14)

Under plane strain conditions, the force at the location x caused by steady growth of an edge dislocation
with unit Burger vector at location x, without tension (Weertman, 1996) is

wf (V)
_ 15
() = 4 (15)
where V is the velocity of the gliding dislocations and f(7) is a function of the velocity as
1 2
Sy = —5— 35[0+ %) - doga)] (16)

27[0(d &
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where og = (1 — V2/2)Pog = (1 — ¥2/c2)'?, ¢, and ¢q are velocities of longitudinal and shear waves, re-
spectively. In terms of Lame constants 4 and p, these characteristic speeds are ¢q = /(4 +2u)/p and
¢s = \/1t/p in which p is the mass density.

The accumulated force from the distribution of dislocations along the entire inelastic zone for a semi-
infinite crack is

o=y [ 20 [ (17)

The equilibrium of the motion of growing cracks is accounted for by the three force sources in the
cohesive zone: (1) the opening stress without the cohesive zone (Eq. (1)), (2) the cohesive stress p(x) and (3)
the stress caused by dislocation o, (x). This leads to:

Koo
plx) = \/T%

Substituting Egs. (17) into (18) results in the governing equation for the crack growth problem. Fol-
lowing Fager et al. (1991), Eq. (18) is rewritten as

o) == K = Vams (1) [ ) Dt ) | ) 20 S (19)

Since the stress at the physical crack-tip is finite, that is, lim,_, /xp(x) = 0, we obtain

+0,(x) (18)

L
t
K, = \/27r,uf(V)/ HU) dr (20)
0o Vi
Thus, the cohesive stress versus dislocation density relation can be rewritten as

oo =) [ 22 P o1)

Based on the formulae in Muskhelishvili (1953), the above equation can be inverted. This leads to

1 VL =1 p(t) d C

= t+ 22
@ muf(V) Jo VL—xt—x VL —x 2
in which C is a constant to be determined. Moreover, Eq. (22) can be recast as
L — L
Ex) = VL =x p) 4 4 {c- ! / p(l) dt] (23)
w?uf(V) Jo VL—tt—x VL —x muf(V) Jo VL —t

Also, Dugdale’s condition, lim,_.; vL — x&(x) =0, is applied at the leading edge of the cohesive zone.
Hence, we have

1 / bop()
C= - d¢ 24
euf(V) Jo VL=t (24)

The above equality is also called the Barenblatt’s condition. It is used to determine the length of the co-
hesive zone.

Thus, the expression for dislocation density is reduced to
B 1 /L VL —x p(t) dr

uf(V) Jo VL—tt—x

4y
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By substituting Egs. (25) in (20), the dynamic stress intensity factor becomes

The fracture energy can be obtained by substituting Egs. (25) in (12). Thus,

(27)

Fir= n%f [/ J__ }

It is interesting to note that there exists a relationship between Ef, K., and C. Using Egs. (24), (26) and (27),
it follows that

KZ
2muf (V)

Therefore, Eq. (24) can be replaced by Eq. (27) to calculate the size of the cohesive zone.
In addition, using Eq. (13) and integrating Eq. (25) with respect to x, it leads to the expression for the

crack opening

500 = = [ ot |22 - LT
wuf (V) L—t L—x-VL-t

From Egs. (25) and (29), the crack opening displacement and its gradient are fully determined by the

traction distribution along the cohesive zone.

It is convenient to rewrite all the equations in non-dimensional forms. Thus, by introducing the
dimensionless coordinates:

{(=x/L and n=t/L (30)

all the governing equations in terms of dislocation density can be expressed as follows.
Dislocation density governing equation:

Em lvlfcp(n)dr]

wuf (V)C? (28)

Er =

}d +4(L) (29)

<(0) = 31
O =207 Jy VT=un—-¢ D
Opening displacement governing equation:
1
zfgmm+&n (32)
{
Dugdale’s condition:
E 33
-7 [/ AlS ] (33)

Cohesive zone constitutive equations:

(1 —@) (L+B,VEm) 0<n<D

p(n) = ) (34)
a<(“><1+mvam> D<n<l

=g

de
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Fracture criterion:

5(0) = 6. (35)
Boundary conditions at the leading edge:

p(1) =2 and 3(1)=0 (36)
Continuity on the interface between two zones:

pi(D—0) =p(D+0) (37)

51(D —0) = 5,(D+0) (38)

where 6 = 6/L is normalized crack opening; §. = J./L and as d. is specified, J. represents the length of the
cohesive zone; p = p/a,, is normalized cohesive stress; p; and o; (i = 1,2) denote the normalized cohesive
stress and opening on the interface calculated based on the cohesive laws in two zones, respectively;

&n = 0,/ 1s a reference strain in the damage zone; D = D/L is the length ratio of the damage zone to the
cohesive zone; « = op,1/0,, 18 the stress ratio between two zones; the normalized fracture energy is defined as:
— Er
Er = 39
' O-mgm(sc ( )

Similarly, the normalized plastic and damage components of the fracture energy are expressed as:

= Ep = Eq4
n=—2>"— and E4=
OmEmOc O mEmOc

(40)

4. Numerical scheme

A collocation method is applied to solve the above system of integral equations (31)—(38). It is assumed
that intervals, [0,D] and [D, 1], are divided into M and N uniform-sized elements, respectively. The un-
known crack opening 6; and its gradient & are assumed constant in each element; and so are the cohesive
forces p;. Furthermore, the mid-point of each element is taken as the collocation points. Thus, a system of
non-linear algebraic equations can be obtained:

M+N
i szf ZBljpj 7]] - (41)
_ MAN
5= &, (42)
J=i
_ M+N 2
f = 7'[2f Z Cz 1 ] (43)
in which
Sj m
1—57 (1+p,V&) 0<n, <D
p(n;) = (44)
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and
Nj+1
B, = —1n’”5"+vl’7] (45)
1= —v1I—-1p "
= —2/T=q" (46)
ni

Considering Eqgs. (41) and (43) plus the traction continuity at D and the failure criterion Eq. (35), we
have M + N + 3 equations for M + N unknown opening gradients and d., D and E;. With known values of
the opening gradients, the normalized crack opening J; can be obtained through Eq. (42). Thus, the opening
continuity on the interface is automatically met. The opening at the leading edge vanishes based on Eq.
(30),. In addition, the specified traction at the leading edge (i.e., Eq. (30);) of the cohesive zone is imposed
by assigning it to the leading element. In the calculations, it is found that the crack opening and its gradient
for the leading element are extremely small.

The non-linear algebraic equations are solved numerically using the Newton—Raphson method (Press
et al., 1992). Accordingly, the iteration stops when the following norm is less than 1072,

MAN+3
gl =S (gl (47)
=1
in which g; is the residual values of the right-hand and left-hand sides in Eqs. (41) and (43), of the tractions
at D approaching from two zones and of 6(0) and 4.

It should be noted that the convergence of the Newton—Raphson method depends on the choice of trial
solutions. Owing to the sudden change in the constitutive laws, difficulty arises in the numerical method
regarding convergence. Here, we follow the same solution strategy used by Costanzo and Walton (2002).
The solutions for some parameters are used as the initial guess for the next solution with small changes in
parameters.

5. Numerical results

Numerical calculations were carried out for steady-state dynamic propagation of plane-strain mode I
cracks. Element numbers, M = 30 and N = 60, were used, to satisfy the solution accuracy requirements.
The elastic properties are £ = 200 GPa, v = 0.3. The mass density is 7833 kg/m*. The longitudinal and
shear wave speeds of the material are 5862.7 and 3133.7 m/s, respectively. The corresponding Rayleigh
wave speed is 2902.3 m/s. The choice of m and n (=0.1) is such that plastic deformation is a major source of
energy dissipation in ductile materials (see, Yuan et al., 1996). For simplicity, it is assumed that the material
possesses the same viscosities in the damage and plastic regimes, that is, § = f,, = . The ultimate strength
for the damage cohesive law is taken as 1200 MPa. The value of g is specified as 0.50,, in the calculations.

5.1. Crack speeds

We begin with the influence of crack speeds on the variations of the cohesive behavior at the crack-tip.
The material constants are o = 1, f = 0.002 and m = 0.3. Fig. 6a—c show distributions of the normalized
crack opening 9§, its gradient ¢ and the normalized traction p along the length of the cohesive zone.
Continuity in these curves is clear although two different material properties are employed. It is noted that
all curves are smooth and the given traction at the leading edge of the cohesive zone is satisfied accurately.
Very low values of opening and opening rate at the leading edge indicate a vanishing source of the fracture
energy outside the cohesive zone and a finite cohesive stress as shown in Fig. 6a and b. In combined plastic
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Fig. 6. Distributions of (a) normalized crack opening §, (b) gradient ¢ and (c) normalized traction p along the cohesive zone, at various
crack speeds for o = 1, f = 0.002 and m = 0.3.

flow and damage, the stress does not exhibit a singularity, but approaches zero at the trailing edge
(x/L = 0) of the cohesive zone, as shown in Fig. 6¢. Thus, introduction of the damage zone can solve stress
divergence and discontinuity at x/L = 0, as mentioned by Langer and Lobkovsky (1998). The cohesive
strength o increases with crack growth rates. This implies an increase in stress triaxility, see Broberg (1999)
and Wnuk and Legat (2002). With increasing crack speed, the crack opening and its gradient increases more
rapidly in the damage zone than in the plastic zone. This is not surprising since the rate effect can suppress
plastic deformation. In addition, it is shown in Fig. 6 that the solutions are insensitive to crack speed, which
is below 0.5¢;.

Fig. 7a—c show the variations of the length ratio D and aspect ratio . of the non-linear zone. With
increasing crack speed, a reduction in D is detected for non-vanishing viscosity, as shown in Fig. 7a. This
means that the damage zone is more deeply embedded within the plastic zone with increasing crack speed.
It is expected that when the material is rate independent, D is insensitive to crack speed. Moreover, there is
a reduction in the length of the cohesive zone because of an increase in the value of 6, as shown in Fig. 7b,
since the critical crack opening displacement is specified. These trends become more evident when the crack
speed is larger than 0.5¢;.
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Fig. 7. Variations of (a) length ratio D, and (b) aspect ratio d. of the cohesive zone, at various crack speeds and f for o = 1 and m = 0.3.
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Fig. 8. Variations of normalized fracture energy Ey, damage energy Eq and plastic energy E, at various crack speeds for o =1,
p=0.002 and m = 0.3.

The velocity variations of the energy components are shown in Fig. 8 for the same material parameters
as in Figs. 6 and 7. The fracture energy increases with crack speed. It is seen in Fig. 8 that more energy is
consumed in the damage zone than in the plastic zone. Therefore, the increase in fracture energy mainly
comes from the damage zone. In contrast, the energy dissipated in the plastic zone is rather insensitive to
crack speed.

5.2. Viscosity effect: f3

The B-dependence of &, ¢ and p along the cohesive zone at V' /¢, = 0.5 is shown in Fig. 9a—c. Cui (1995)
demonstrated that the viscosity effect could increase the fracture stress, i.e., the cohesive strength. This
conclusion is recovered here since an increase in op exists as a result of an increase in viscosity. It is noted
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Fig. 9. Distributions of (a) normalized crack opening §, (b) its gradient ¢ and (c) normalized traction p along the cohesive zone,
at various values of ff fora =1, V' /¢; = 0.5 and m = 0.3.

that the cohesive stress is enhanced in the damage zone with 5. However, the viscosity effect on the opening
and dislocation density is not strong.

The variations of the length ratio D and aspect ratio . of the cohesive zone are already plotted in Fig. 7
against f. Similar to the velocity effect, increasing the viscosity can reduce D so that the damage zone
becomes relatively smaller compared with the plastic zone. In addition, increasing the viscosity factor can
increase the length of the cohesive zone since . increases with 8 in Fig. 7b.

As the stress level is increased, the fracture energy can be increased by viscosity, as shown in Fig. 10a.
The viscosity effect becomes more important at high crack speeds. For comparison the ratio of its plastic to
damage components is shown in Fig. 10b. It is seen that the energy ratio E,,/E4 decreases with increasing f.
Similar to the velocity effect, increasing the viscosity coefficient makes the energy consumption in the
damage zone become more dominant.

5.3. Strain-softening index: m

The shape of the cohesive law is sensitive to the choice of m and o in this model. Larger m implies faster
reduction of cohesive stress in the damage zone. The variations of the length ratio and aspect ratio of the
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V/es=0.5.

cohesive zone are plotted against m in Fig. 1laand b for o = 1, f = 0.002 and V' /¢, = 0.5. It can be inferred
from Fig. 11a that an increase in m yields a significantly larger length ratio. Considering shrinkage of the
cohesive zone as J., which increases with m as shown in Fig. 11b, the plastic zone size is quite significantly
reduced. As expected, the fracture energy decreases with m in Fig. 12a, and therefore, the material is
vulnerable to damage. In addition, the energy contributed by the plastic zone decreases substantially with
increasing m, as shown in Fig. 12b.

Fig. 13a—c show the m-dependence of J, ¢ and p along the cohesive zone for the same parameters as Figs.
11 and 12. Clearly, at a specified position { along the damage zone, the normalized opening increases with
m, while the dislocation density or equivalently the opening rate is reduced near the physical crack-tip.
From the cohesive law in the damage zone, with increasing m, this would yield a low cohesive stress at a
specified position {, as shown in Fig. 13c. In addition, it is seen from Fig. 13c that the cohesive strength
decreases with m.
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Fig. 13. Distributions of (a) normalized crack opening 8, (b) its gradient ¢ and (c) normalized traction p along the cohesive zone at
various values of m for « = 1, f#=0.002 and V' /¢; = 0.5.
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5.4. Strength ratio: 0. = 6,/

Table 1 lists all global quantities at different o’s for the case of m = 0.5, § = 0.002 and V' /¢, = 0.5. An
increase in o yields a larger D indicating the importance of the damage zone. It is found that, with

Table 1
Variations of length ratio D, aspect ratio J. of the cohesive zone, fracture energy E; and energy ratio E,1/Eq at various values of « for
m=0.5,=0.002and V/c; =0.5

o D O E¢ Epl/Ed
0.8 0.231 0.0101 38.36 1.07
0.9 0.286 0.0104 40.95 0.68
1.0 0.343 0.0106 42.75 0.42
1.1 0.399 0.0108 43.94 0.24
1.2 0.449 0.0109 44.67 0.14
1.3 0.489 0.0109 45.08 0.07
1.4 0.542 0.0110 45.41 0.02
0.012 0.035
0.010 | 0.030
0.025 - -
0.008 1 0=0.8,1.0,1.2,1.4
S 0.020 -
0.006 | &
0.015 -
0.004 1 0=0.8,1.0,12,1.4 0.010 4
0.002 1 0.005
0.000 ‘ ‘ ‘ ; 0.000 ‘ ‘ ‘ ‘
0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0
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Fig. 14. Distributions of (a) normalized crack opening J, (b) its gradient ¢ and (c) normalized traction p along the cohesive zone
at various o’s for m = 0.5, f =0.002 and V' /¢, = 0.5.
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increasing «, the fracture energy E; increases so that the contribution to the fracture energy from the plastic
zone is greatly reduced. It is noted that the length of the non-linear zone seems insensitive to the change in
o, although a slight increase is found.

In this case, details about the distributions of the normalized opening, its gradient and normal-
ized traction along the cohesive zone are provided in Fig. 14a—c. With increasing o, the opening and its
gradient decrease in the plastic zone, as shown in Fig. 14a and b. At larger o’s, the opening and its gradient
tend to vanish in the leading parts of the plastic zone. From the traction profiles in Fig. 14c, the cohesive
strength still increases with «. However, the normalized cohesive strength increases from around 0.8-1.0
while the normalized plastic ultimate strength o« changes significantly from 0.8 to 1.4. Moreover, the co-
hesive strength tends to be steady around 1.0 with further increase in «. Thus, large fracture stress in pure
plastic models, i.e., the plastic ultimate strength in this paper, cannot exist in the presence of the damage
zone.

6. Conclusions

This paper presented a two-region cohesive zone model for simulating plane strain Mode-I steady-state
dynamic crack growth in viscoplastic solids. Such a model, as suggested by Wnuk (1983), includes two
distinct mechanisms: strain-hardening plastic flow and strain-softening damage evolution. From our re-
sults, the energy dissipated in the plastic zone clearly cannot be neglected at low crack speeds and small
values of o and m. The dependence of crack growth behavior on crack speeds and cohesive constitutive
parameters are addressed numerically in this paper. While the model may not capture all features of the
failure of rate-dependent materials, it has provided new insights in the understanding of dynamic crack
growth. Major numerical results and findings are given below.

(a) Crack growth rates can change opening and traction profiles via the velocity effect and rate sensitivity
(viscosity). Fast crack speeds can reduce the lengths of the non-linear zone and the damage zone, but at
the same time, they can increase the cohesive strength and the fracture energy. In addition, more energy
is dissipated in the damage zone with increasing crack speed.

(b) Rate sensitivity (viscosity) is reflected in the effects of crack speeds, especially at high crack growth
rates.

(c) The results of a small damage zone and large cohesive strength close to the physical crack-tip at high
crack growth rates indicate that a critical cohesive stress can be selected as an alternative failure crite-
rion, as stated by Costanzo and Walton (2002). With this extended criterion, it is expected that the for-
bidden range of crack speeds may appear for specified cohesive parameters.

(d) The definition of crack-tip constraint in rate-dependent materials needs further studies with regard to
dynamic growth. Based on the cohesive strength, the increase of crack-tip constraints can be related to
an increase in crack growth rates and rate-sensitivity factors. However, the increase of softening index
in the damage zone can lead to the loss of constraints.

(e) Material parameters like m, n and o that control the cohesive law are affected by microstructural fea-
tures like void sizes. Their physical origins are not completely understood because of a lack of micro-
structural studies. However, these shape parameters play an important role in fracture assessment.

(f) There is a competition between the damage zone and the plastic zone. With increasing crack speeds, the
damage zone consumes more energy. Plastic energy is suppressed by crack speeds and the plastic
zone length is reduced. However, the damage zone can be decreased by a lower plastic ultimate strength.
In addition, even though a large ultimate strength is assigned to the plastic zone, the existence of a
damage zone can lead to the lowering of the cohesive stress below the level of the plastic ultimate
strength.
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