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Abstract

Mode I steady-state dynamic crack growth in rate-dependent viscoplastic solids containing damage, under small

scale yielding conditions, is analyzed based on a modified cohesive zone model. A multi-scale approach is used to

describe the entire non-linear zone consisting of a plastic region and a damage region, each of which has its own

constitutive law. Traction in the damage region is characterized by a softening power-law, in terms of the ultimate

strength, a softening index and a rate sensitivity factor. In the plastic region, the cohesive law is assumed to be both

strain hardening and rate dependent. The critical crack opening displacement at the physical crack-tip controls crack

growth. The governing integral equations are derived and solved by a collocation method combined with associated

boundary conditions. Numerical results are presented for the traction and opening profiles along the cohesive zone, the

fracture energy and lengths of the damage and non-linear zones at different crack speeds and for different material

parameters. The importance of factors, such as material softening, plastic deformation, crack speed and viscosity, is

identified by parametric studies. In addition, the competition of plastic flow and material damage, and its effect on crack

growth, are discussed.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Many engineering materials display so-called �strain softening� behavior as microstructures evolve. For

instance, ductile crack growth in metals is usually accompanied by a decrease in strength caused by

the nucleation and growth of voids. Cracked specimens have, at least locally, a non-linear characteristic

zone in the crack-tip vicinity. Material elements in this zone cannot sustain further load. This phenome-

non is also common in other materials such as polymers, coarse-grained ceramics, and fiber composite
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materials. Strictly speaking, conventional macroscopic continuum descriptions of this highly deformed

zone are not appropriate. Barenblatt (1959), Dugdale (1960) and Bilby et al. (1963) introduced a cohe-

sive zone concept by assuming a relationship between the cohesive force and the pseudo opening dis-

placement. However, the lack of strain-softening response in the B–D (Bareblatt–Dugdale) model results in
stress divergence and discontinuity at the receding edge of the cohesive zone, as shown by Glennie (1971).

Hence, correct modeling of the fracture behavior of these materials depends very much on the inti-

mate knowledge of their failure micro-mechanisms and certain internal structures. Stable crack growth in

strain-softening materials has been studied for fiber reinforced materials by Foote et al. (1986) and Cui

(1995), for laminated composites by Wnuk and Kriz (1985), for rate-dependent materials by Fager et al.

(1991) and for ductile materials by Tvergaard and Hutchinson (1992), Zhang and Gross (1995) and Yuan

et al. (1996).

The cohesive zone, with its own constitutive requirement, is confined to a line segment or a narrow strip
ahead of the crack-tip. Use of a cohesive zone has successfully captured some main features of fracture

behavior such as vanishing stress singularity, finite fracture process zone and increasing toughness at high

crack growth rates. Although recent work by Costanzo and Walton (2002) did consider the dynamic crack

growth in materials with coupled thermal and mechanical responses, few studies addressed the co-existence

of different mechanisms inside the cohesive zone, such as strain-hardening plastic flow and strain-softening

void growth and coalescence. Clearly, material points ahead of the crack-tip are either cohesive or deco-

hesive. Once in a decohesive state, they cannot return to their original cohesive state. In fact, most studies

based on the original B–D model do not separate the damage zone or the fracture process zone from the
entire non-linear region, even though a combined plastic/damage cohesive law was presented by Zhang and

Gross (1995). Thus, it is difficult to discern macroscopic behaviors caused by damage from those by plastic

deformation. Many experimental results (e.g., Yuan et al. (1996) and cited references therein) have shown

that the damage zone in a ductile material is restricted to a very small region near the physical crack-tip.

However, this small damage zone can cause a considerable increase in the fracture resistance. In some

extreme cases, there is no damage zone, only plastic flow. Hence, it is necessary to examine the cohesive

zone from a multi-scale point of view, especially for a small damage zone lying between the crack-tip and

the plastic zone. Wnuk (1983) modified the B–D model by using two zones so as to predict the stability of
crack growth based on their relative lengths, although the transition from plastic to damage zone is ex-

pected to be gradual. The two extremes, very brittle and very ductile, can be described as two limiting cases

corresponding to a fully damage zone and a pure plastic zone ahead of the crack-tip, respectively. Con-

sideration of crack growth stability based on length scales has been highlighted in recent works for new

materials with coupled mechanisms (Cox and Marshall, 1994; Gao et al., 1997). Of course, the need to

adopt a two-zone cohesive model also lies in the difficulty in developing a unified model covering all stages

of material deformation.

Fracture characteristics for ductile materials can be represented by a combined cohesion–decohesion
curve. Fig. 1 shows the typical curve for a unit cell subjected to uniaxial straining. It is always considered as

a model in the cohesive zone of a Mode I crack. Material elements experience decohesion when the crack

opening d > d1 (the opening corresponding to the peak cohesive stress) while cohesion by plastic defor-

mation takes place when d < d1. In addition, when the cohesive stress p < rE (yield strength) and for small

opening displacement, there is a non-dissipative regime. However, the energy dissipated in the non-

dissipative zone is not considered in this paper. While ductile fracture is different from failure of piezo-

electric ceramics with coupled electrical–mechanical behaviors (Gao et al., 1997), damage and plastic

deformation can also be taken as two different deformation mechanisms, as stated above. Plastic flow by
itself has some special characteristics such as strain hardening and elastic unloading, and post-peak

localization caused by void growth can limit plastic deformation. Crack growth in ductile materials is

governed by the competition between damage and plastic flow. Both contribute to the fracture energy, but

compete against each other. Two critical parameters in the cohesive laws control the fracture process. One



Fig. 1. Typical curves for the cohesion–decohesion behaviors of ductile materials based on the unit-cell model subject to uniaxial stress.
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is the cohesive strength rD in Fig. 1, which is the peak stress at instability under load-controlled condition.

The higher the cohesive strength, the smaller is the fracture process zone as found by Tvergaard and

Hutchinson (1992). Another parameter is the shape of the cohesion–decohesion curve. The curve shape

influences the ratio of the height of the process zone to its length, as observed by Andersson and Bergkvist
(1970).

The cohesion–decohesion curve is also affected by some macroscopic parameters such as crack-tip

constraints resulting from specimen geometry and loading mode. The constraint effect has been dealt with

in two ways: macro-mechanical and micro-mechanical. Macro-mechanical approaches by Hancock et al.

(1993) and O�Dowd and Shih (1991) used additional parameters, like T -stress or Q-term, to identify

the constraint effect. Alternatively, the curves from the unit-cell model under multi-axial tension can ap-

proximately reflect the real situation of void growth ahead of the crack-tip. Micro-mechanical ap-

proaches have established a range of damage models, such as the modified Gurson model (see Tvergaard,
1990), to account for the effect of hydrostatic stresses. A negative T -stress can extend the value of d1, and
hence, low constraints can make the process zone deeply embedded inside the plastic region, as argued by

Broberg (1999). Recent work by Wnuk and Legat (2002) has included a triaxility-dependent cohesive zone

model to assess fracture work and cohesive stress distributions because low constraint can reduce the value

of rD.

It is anticipated that introduction of a two-region cohesive zone model would be reasonable to generalize

the essential ideas of Barenblatt (1959) and Dugdale (1960), though the corresponding non-linear analysis

becomes more difficult. As a first step to understand failure mechanisms, some simple forms of cohesive
constitutive laws are used. While the two-zone model is more difficult to judge than the original B–D model,

the results will shed new lights on our understanding of the crack problem.

The issue of Mode I steady-state dynamic crack growth in rate-dependent viscoplastic materials

containing damage under small scale yielding, is revisited based on a two-region cohesive zone model. This

paper is organized as follows. In Section 2, formulation of steady-state dynamic growth of a plane-

strain mode I crack under small scale yielding conditions is given and the cohesive laws in the damage zone

and the plastic zone are provided. This is followed in Section 3 by derivations of the governing equa-

tions based on the balance of tractions along the cohesive zone. The numerical method used to solve
the integral equation is given in Section 4 and numerical results for a system of material parameters and

crack growth rates are presented in Section 5 for different crack speeds. Concluding remarks are given in

Section 6.
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2. Statement of the problem

Consider the problem of a steady-state plane strain mode I semi-infinite crack spreading dynamically in

an isotropic elastic medium under small scale yielding conditions. The crack lies on the plane y ¼ 0 and
extends in the x-direction at a constant crack speed V with the origin of the coordinates moving with the

crack-tip. The singular opening stresses ahead of the crack-tip can be characterized by a Mode I dynamic

stress intensity factor K1 in the form
rðxÞ ¼ K1ffiffiffiffiffiffiffiffi
2px

p ð1Þ
so that K1 represents the level of external loads.

To account for non-linearity in viscoplastic materials, we resort to the cohesive zone model as em-

phasized in the previous section. Ahead of the crack-tip, there is a cohesive zone, that is, a non-linear region

across which the cohesive forces can be translated. The geometric configuration of the model is schemati-

cally illustrated in Fig. 2. The entire cohesive zone is divided into two regions to avoid inconsistency with

experimental observations. There are different micro-mechanisms operative in these two regions. One is

void-damage softening and the other is plastic deformation hardening associated with mobile dislocations.
Elastic behavior is maintained outside of the non-linear region. The cohesive-zone length is L. Region

0 < x < D represents the damage zone, the length of which is D. Region D < x < L denotes the active plastic

zone in which a hardening traction law is assigned.

The crack is treated with a cohesive stress pðxÞ along the entire line segment of the effective crack. The

opening displacement d of the cohesive zone, corresponding to the responses of the cohesive stress, is

defined as:
dðxÞ ¼ uyðx;þ0Þ � uyðx;�0Þ ð2Þ

in which uy is the vertical displacement along the crack-face.

To obtain the mechanical response at given loads, a relation between the traction and the separation

should be provided. In the remainder, a specified constitutive relation for power-law strain softening and

rate sensitivity is chosen for the damage zone ½0;D�. Its rate-independent form is illustrated in Fig. 3. We

begin with a class of viscous cohesive laws in the form:
pðdÞ ¼ rm 1

�
� d
dc

�m

ð1þ bm
_ddÞ ð3Þ
Fig. 2. Schematic of a cohesive zone ahead of a crack tip and the coordinate system.
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Fig. 3. Traction–separation law for a damaged material.
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where m is softening index, bm viscous coefficient due to inertia effect, dc critical opening displacement, rm

ultimate tensile strength for the damage zone, and _dd rate of opening which relates to d through the universal

relationship for steady crack growth at a subsonic speed V :
_dd ¼ �V
od
ox

ð4Þ
A hardening traction–separation relation is assigned to the plastic zone ½D; L�. Its rate-independent form
is shown in Fig. 4. The detailed expression is written as
pðdÞ ¼ rpl

d
dc

� �n

ð1þ bn
_ddÞ ð5Þ
where n is hardening exponent, rpl ultimate strength and bn viscosity for plastic deformation. It is noted

that the cohesive law in the plastic zone is also rate dependent, but with a different viscosity coefficient

because of different mechanisms. This rising stress regime corresponds to dynamic dislocation movement. n
can vary under the condition of m > n. It must be emphasized that bm and bn highlight the effect of material

inertia. In their absence, the above laws are reduced to their rate-independent forms. For rate-dependent
Fig. 4. Traction–separation law for plastic flow.
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materials, the maximum cohesive stress rD depends not only on the cohesive material parameters in Eqs. (3)

and (5), but also on the crack propagation rates from Eq. (4).

Then, we must decide on the boundary conditions and interface condition between the two zones.

Material elements at the physical crack-tip lose their load-carrying ability. Therefore, the failure criterion is
defined by:
dðx ¼ 0Þ ¼ dc ð6Þ
It is assumed that the fracture process is dominated by non-linear deformation, that is, the area beneath

the non-dissipative part in the cohesion–decohesion curve shown in Fig. 1 is extremely small. To meet this

requirement, the crack opening at the leading edge should be extremely small. The traction at the leading

edge is not necessarily zero and it may be comparable to its counter-parts in the plastic and damage zones.

Therefore, it is assumed that
pðx ¼ LÞ ¼ rG and dðx ¼ LÞ ! 0 ð7Þ
where rG is minimum cohesive stress for occurrence of plastic deformation and it is dependent on the T -
stress and loading modes. Considering Eqs. (5) and (7), a very small value of n (¼ 0.1) should be used.

In addition, the stress and opening continuity should be maintained at the interface between two zones.

Thus
pðx ¼ D� 0Þ ¼ pðx ¼ Dþ 0Þ ð8Þ
dðx ¼ D� 0Þ ¼ dðx ¼ Dþ 0Þ ð9Þ
The problem can also be studied from the energetic viewpoint. Energy release rate can be obtained by

evaluating the dynamic J -integral along a remote contour Cc enclosing the whole cohesive zone Cd þ Cpl, as

shown in Fig. 5. Cpl and Cd denote the plastic and damage segments. It should be pointed out that the

energy flux must also include the non-dissipative part, that is, the segment with p < rG. In accordance with

Griffith�s theory, the non-dissipative cohesive stress yields the intrinsic fracture energy dissipated at a point-

like sharp tip. However, the contribution from this non-dissipative stress is extremely small based on Eq.

(7). The non-dissipative segment should be extremely small and it is not taken into account in this paper.
Fig. 5. J -integral contours for evaluating local and global energy fluxes.
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Thus, the energy flux is approximately the rate of energy dissipated in the dissipative cohesive zone. From

Freund (1990) the energy flux for steady-state dynamic crack growth is defined as
_EE ¼ V
Z
Cc

ðU
�

þ T Þn1 � rijnj
oui
ox

�
ds ð10Þ
in which U is strain energy density, T is kinetic energy density, ni is normal unit of the contour and rij and ui
are stress tensor and displacement vector, respectively.

To facilitate discussion, the ratio of energy flux to the crack speed is used, instead of the energy flux itself.

Eq. (10) is rewritten as _EE ¼ VE1, in which E1 is interpreted as the available energy release rate for the

system. Since the linearly elastic material outside the cohesive zone is energy-conservation, the value of
energy flux can be evaluated along the cohesive zone. Therefore, we have
_EE ¼
Z L

0

pðxÞ _ddðxÞdx ¼ �V
Z L

0

pðxÞ odðxÞ
ox

dx ð11Þ
We can also define the required energy release rate Ef for crack propagation, or called as the fracture energy

dissipated in the cohesive zone. Since elastic energy is fully converted to fracture energy in the system, the

required energy release rate must be identified with the available energy release rate. Thus, the fracture

energy can be written as
Ef ¼ �
Z
CplþCd

pðxÞ odðxÞ
ox

dx ¼ �
Z
Cpl

 
þ
Z
Cd

!
pðxÞ odðxÞ

ox
dx ð12Þ
To compare the contributions from the damage and plastic zones, we denote Ed and Epl the damage and

plastic parts of the fracture energy, respectively.
3. Governing equations

According to dislocation theory, the dislocation density nðxÞ is defined as the gradient of the jump of the

crack profile, i.e., nðxÞ ¼ �odðxÞ=ox, and the crack opening displacement along the cohesive zone is given

by
dðxÞ ¼
Z L

x
nðtÞdt þ dðLÞ ð13Þ
in which dðLÞ is the opening at the leading edge of the non-linear zone. At the physical crack-tip, the critical

crack opening displacement is
dc ¼
Z L

0

nðtÞdt þ dðLÞ ð14Þ
Under plane strain conditions, the force at the location x caused by steady growth of an edge dislocation

with unit Burger vector at location x0 without tension (Weertman, 1996) is
ryðxÞ ¼ � lf ðV Þ
x� x0

ð15Þ
where V is the velocity of the gliding dislocations and f ðV Þ is a function of the velocity as
f ðV Þ ¼ � 1

2pad

c2s
V 2

½ð1þ a2s Þ
2 � 4adas� ð16Þ
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where ad ¼ ð1� V 2=c2dÞ
1=2as ¼ ð1� V 2=c2s Þ

1=2
, cs and cd are velocities of longitudinal and shear waves, re-

spectively. In terms of Lame constants k and l, these characteristic speeds are cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
and

cs ¼
ffiffiffiffiffiffiffiffi
l=q

p
in which q is the mass density.

The accumulated force from the distribution of dislocations along the entire inelastic zone for a semi-
infinite crack is
ry ¼ lf ðV Þ
Z L

0

nðtÞ
x� t

ffiffiffi
t
x

r
dt ð17Þ
The equilibrium of the motion of growing cracks is accounted for by the three force sources in the

cohesive zone: (1) the opening stress without the cohesive zone (Eq. (1)), (2) the cohesive stress pðxÞ and (3)

the stress caused by dislocation ryðxÞ. This leads to:
pðxÞ ¼ K1ffiffiffiffiffiffiffiffi
2px

p þ ryðxÞ ð18Þ
Substituting Eqs. (17) into (18) results in the governing equation for the crack growth problem. Fol-

lowing Fager et al. (1991), Eq. (18) is rewritten as
pðxÞ ¼ 1ffiffiffiffiffiffiffiffi
2px

p K1

�
�

ffiffiffiffiffiffi
2p

p
lf ðV Þ

Z L

0

nðtÞffiffi
t

p dt
�
þ lf ðV Þ

Z L

0

nðtÞ
x� t

ffiffiffi
x
t

r
dt ð19Þ
Since the stress at the physical crack-tip is finite, that is, limx!0

ffiffiffi
x

p
pðxÞ ¼ 0, we obtain
K1 ¼
ffiffiffiffiffiffi
2p

p
lf ðV Þ

Z L

0

nðtÞffiffi
t

p dt ð20Þ
Thus, the cohesive stress versus dislocation density relation can be rewritten as
pðxÞ ¼ lf ðV Þ
Z L

0

nðtÞ
x� t

ffiffiffi
x
t

r
dt ð21Þ
Based on the formulae in Muskhelishvili (1953), the above equation can be inverted. This leads to
nðxÞ ¼ 1

p2lf ðV Þ

Z L

0

ffiffiffiffiffiffiffiffiffiffi
L� t

pffiffiffiffiffiffiffiffiffiffiffi
L� x

p pðtÞ
t � x

dt þ Cffiffiffiffiffiffiffiffiffiffiffi
L� x

p ð22Þ
in which C is a constant to be determined. Moreover, Eq. (22) can be recast as
nðxÞ ¼ 1

p2lf ðV Þ

Z L

0

ffiffiffiffiffiffiffiffiffiffiffi
L� x

p ffiffiffiffiffiffiffiffiffiffi
L� t

p pðtÞ
t � x

dt þ 1ffiffiffiffiffiffiffiffiffiffiffi
L� x

p C
�

� 1

p2lf ðV Þ

Z L

0

pðtÞffiffiffiffiffiffiffiffiffiffi
L� t

p dt
�

ð23Þ
Also, Dugdale�s condition, limx!L

ffiffiffiffiffiffiffiffiffiffiffi
L� x

p
nðxÞ ¼ 0, is applied at the leading edge of the cohesive zone.

Hence, we have
C ¼ 1

p2lf ðV Þ

Z L

0

pðtÞffiffiffiffiffiffiffiffiffiffi
L� t

p dt ð24Þ
The above equality is also called the Barenblatt�s condition. It is used to determine the length of the co-

hesive zone.

Thus, the expression for dislocation density is reduced to
nðxÞ ¼ 1

p2lf ðV Þ

Z L

0

ffiffiffiffiffiffiffiffiffiffiffi
L� x

p ffiffiffiffiffiffiffiffiffiffi
L� t

p pðtÞ
t � x

dt ð25Þ
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By substituting Eqs. (25) in (20), the dynamic stress intensity factor becomes
K1 ¼
ffiffiffi
2

p

r Z L

0

pðtÞffiffiffiffiffiffiffiffiffiffi
L� t

p dt ð26Þ
The fracture energy can be obtained by substituting Eqs. (25) in (12). Thus,
Ef ¼
1

p2lf ðV Þ

Z L

0

pðtÞffiffiffiffiffiffiffiffiffiffi
L� t

p dt
� �2

ð27Þ
It is interesting to note that there exists a relationship between Ef , K1 and C. Using Eqs. (24), (26) and (27),

it follows that
Ef ¼
K2

1
2plf ðV Þ ¼ p2lf ðV ÞC2 ð28Þ
Therefore, Eq. (24) can be replaced by Eq. (27) to calculate the size of the cohesive zone.
In addition, using Eq. (13) and integrating Eq. (25) with respect to x, it leads to the expression for the

crack opening
dðxÞ ¼ 1

p2lf ðV Þ

Z L

0

pðtÞ 2
ffiffiffiffiffiffiffiffiffiffiffi
L� x

pffiffiffiffiffiffiffiffiffiffi
L� t

p
�

� ln

ffiffiffiffiffiffiffiffiffiffiffi
L� x

p
þ

ffiffiffiffiffiffiffiffiffiffi
L� t

pffiffiffiffiffiffiffiffiffiffiffi
L� x

p
�

ffiffiffiffiffiffiffiffiffiffi
L� t

p
����

����
�
dt þ dðLÞ ð29Þ
From Eqs. (25) and (29), the crack opening displacement and its gradient are fully determined by the

traction distribution along the cohesive zone.

It is convenient to rewrite all the equations in non-dimensional forms. Thus, by introducing the

dimensionless coordinates:
f ¼ x=L and g ¼ t=L ð30Þ

all the governing equations in terms of dislocation density can be expressed as follows.

Dislocation density governing equation:
nðfÞ ¼ em
p2f ðV Þ

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffi
1� f

pffiffiffiffiffiffiffiffiffiffiffi
1� g

p �ppðgÞ
g� f

dg ð31Þ
Opening displacement governing equation:
�ddðxÞ ¼
Z 1

f
nðtÞdt þ �ddð1Þ ð32Þ
Dugdale’s condition:
Ef ¼
p

p2f ðV Þ�ddc

Z 1

0

�ppðgÞffiffiffiffiffiffiffiffiffiffiffi
1� g

p dg

" #2
ð33Þ
Cohesive zone constitutive equations:
�ppðgÞ ¼

1�
�ddðgÞ
�ddc

 !m

ð1þ bmV nðgÞÞ 0 < g < D

a
�ddðgÞ
�ddc

 !n

ð1þ bnV nðgÞÞ D < g < 1

8>>>>><
>>>>>:

ð34Þ
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Fracture criterion:
�ddð0Þ ¼ �ddc ð35Þ

Boundary conditions at the leading edge:
�ppð1Þ ¼ rG

rm
and �ddð1Þ ¼ 0 ð36Þ
Continuity on the interface between two zones:
�pp1ðD� 0Þ ¼ �pp2ðDþ 0Þ ð37Þ
�dd1ðD� 0Þ ¼ �dd2ðDþ 0Þ ð38Þ
where �dd ¼ d=L is normalized crack opening; �ddc ¼ dc=L and as dc is specified, �ddc represents the length of the
cohesive zone; �pp ¼ p=rm is normalized cohesive stress; �ppi and �ddi ði ¼ 1; 2Þ denote the normalized cohesive

stress and opening on the interface calculated based on the cohesive laws in two zones, respectively;

em ¼ rm=l is a reference strain in the damage zone; D ¼ D=L is the length ratio of the damage zone to the

cohesive zone; a ¼ rpl=rm is the stress ratio between two zones; the normalized fracture energy is defined as:
Ef ¼
Ef

rmemdc
ð39Þ
Similarly, the normalized plastic and damage components of the fracture energy are expressed as:
Epl ¼
Epl

rmemdc
and Ed ¼

Ed

rmemdc
ð40Þ
4. Numerical scheme

A collocation method is applied to solve the above system of integral equations (31)–(38). It is assumed

that intervals, ½0;D� and ½D; 1�, are divided into M and N uniform-sized elements, respectively. The un-

known crack opening �ddi and its gradient ni are assumed constant in each element; and so are the cohesive
forces �ppi. Furthermore, the mid-point of each element is taken as the collocation points. Thus, a system of

non-linear algebraic equations can be obtained:
ni �
em

p2f ðV Þ
XMþN

j¼1

Bij�ppjðgjÞ ¼ 0 ð41Þ

�ddi ¼
XMþN

j¼i

njDgj ð42Þ

Ef ¼
1

p2f ðV Þ�ddc

XMþN

i¼1

Ci�ppiðfiÞ
" #2

ð43Þ
in which
�ppðgjÞ ¼
1�

�ddj
�ddc

 !m

ð1þ bmV njÞ 0 < gj < D

a
�ddj
�ddc

 !n

ð1þ bnV njÞ D < gj < 1

8>>>>><
>>>>>:

ð44Þ
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and
Bij ¼
"
� ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1� fi

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
1� g

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fi �

ffiffiffiffiffiffiffiffiffiffiffi
1� g

pp
�����

�����
#�����

gjþ1

gj

ð45Þ

Ci ¼ � 2
ffiffiffiffiffiffiffiffiffiffiffi
1� g

p ���giþ1

gi
ð46Þ
Considering Eqs. (41) and (43) plus the traction continuity at D and the failure criterion Eq. (35), we

have M þ N þ 3 equations for M þ N unknown opening gradients and �ddc, D and Ef . With known values of

the opening gradients, the normalized crack opening �ddi can be obtained through Eq. (42). Thus, the opening

continuity on the interface is automatically met. The opening at the leading edge vanishes based on Eq.

(30)2. In addition, the specified traction at the leading edge (i.e., Eq. (30)1) of the cohesive zone is imposed

by assigning it to the leading element. In the calculations, it is found that the crack opening and its gradient

for the leading element are extremely small.

The non-linear algebraic equations are solved numerically using the Newton–Raphson method (Press
et al., 1992). Accordingly, the iteration stops when the following norm is less than 10�24,
kgk ¼
XMþNþ3

i¼1

ðjgijÞ2 ð47Þ
in which gi is the residual values of the right-hand and left-hand sides in Eqs. (41) and (43), of the tractions

at D approaching from two zones and of �ddð0Þ and �ddc.
It should be noted that the convergence of the Newton–Raphson method depends on the choice of trial

solutions. Owing to the sudden change in the constitutive laws, difficulty arises in the numerical method

regarding convergence. Here, we follow the same solution strategy used by Costanzo and Walton (2002).

The solutions for some parameters are used as the initial guess for the next solution with small changes in

parameters.
5. Numerical results

Numerical calculations were carried out for steady-state dynamic propagation of plane-strain mode I

cracks. Element numbers, M ¼ 30 and N ¼ 60, were used, to satisfy the solution accuracy requirements.

The elastic properties are E ¼ 200 GPa, m ¼ 0:3. The mass density is 7833 kg/m3. The longitudinal and

shear wave speeds of the material are 5862.7 and 3133.7 m/s, respectively. The corresponding Rayleigh

wave speed is 2902.3 m/s. The choice of m and n (¼ 0.1) is such that plastic deformation is a major source of

energy dissipation in ductile materials (see, Yuan et al., 1996). For simplicity, it is assumed that the material
possesses the same viscosities in the damage and plastic regimes, that is, b ¼ bm ¼ bn. The ultimate strength

for the damage cohesive law is taken as 1200 MPa. The value of rG is specified as 0:5rm in the calculations.

5.1. Crack speeds

We begin with the influence of crack speeds on the variations of the cohesive behavior at the crack-tip.

The material constants are a ¼ 1, b ¼ 0:002 and m ¼ 0:3. Fig. 6a–c show distributions of the normalized

crack opening �dd, its gradient n and the normalized traction �pp along the length of the cohesive zone.

Continuity in these curves is clear although two different material properties are employed. It is noted that

all curves are smooth and the given traction at the leading edge of the cohesive zone is satisfied accurately.
Very low values of opening and opening rate at the leading edge indicate a vanishing source of the fracture

energy outside the cohesive zone and a finite cohesive stress as shown in Fig. 6a and b. In combined plastic
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Fig. 6. Distributions of (a) normalized crack opening �dd, (b) gradient n and (c) normalized traction �pp along the cohesive zone, at various

crack speeds for a ¼ 1, b ¼ 0:002 and m ¼ 0:3.
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flow and damage, the stress does not exhibit a singularity, but approaches zero at the trailing edge

ðx=L ¼ 0Þ of the cohesive zone, as shown in Fig. 6c. Thus, introduction of the damage zone can solve stress

divergence and discontinuity at x=L ¼ 0, as mentioned by Langer and Lobkovsky (1998). The cohesive
strength rD increases with crack growth rates. This implies an increase in stress triaxility, see Broberg (1999)

and Wnuk and Legat (2002). With increasing crack speed, the crack opening and its gradient increases more

rapidly in the damage zone than in the plastic zone. This is not surprising since the rate effect can suppress

plastic deformation. In addition, it is shown in Fig. 6 that the solutions are insensitive to crack speed, which

is below 0:5cs.
Fig. 7a–c show the variations of the length ratio D and aspect ratio �ddc of the non-linear zone. With

increasing crack speed, a reduction in D is detected for non-vanishing viscosity, as shown in Fig. 7a. This

means that the damage zone is more deeply embedded within the plastic zone with increasing crack speed.
It is expected that when the material is rate independent, D is insensitive to crack speed. Moreover, there is

a reduction in the length of the cohesive zone because of an increase in the value of �ddc as shown in Fig. 7b,

since the critical crack opening displacement is specified. These trends become more evident when the crack

speed is larger than 0:5cs.
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The velocity variations of the energy components are shown in Fig. 8 for the same material parameters

as in Figs. 6 and 7. The fracture energy increases with crack speed. It is seen in Fig. 8 that more energy is

consumed in the damage zone than in the plastic zone. Therefore, the increase in fracture energy mainly
comes from the damage zone. In contrast, the energy dissipated in the plastic zone is rather insensitive to

crack speed.
5.2. Viscosity effect: b

The b-dependence of �dd, n and �pp along the cohesive zone at V =cs ¼ 0:5 is shown in Fig. 9a–c. Cui (1995)

demonstrated that the viscosity effect could increase the fracture stress, i.e., the cohesive strength. This

conclusion is recovered here since an increase in rD exists as a result of an increase in viscosity. It is noted
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that the cohesive stress is enhanced in the damage zone with b. However, the viscosity effect on the opening

and dislocation density is not strong.

The variations of the length ratio D and aspect ratio �ddc of the cohesive zone are already plotted in Fig. 7

against b. Similar to the velocity effect, increasing the viscosity can reduce D so that the damage zone

becomes relatively smaller compared with the plastic zone. In addition, increasing the viscosity factor can

increase the length of the cohesive zone since �ddc increases with b in Fig. 7b.
As the stress level is increased, the fracture energy can be increased by viscosity, as shown in Fig. 10a.

The viscosity effect becomes more important at high crack speeds. For comparison the ratio of its plastic to

damage components is shown in Fig. 10b. It is seen that the energy ratio Epl=Ed decreases with increasing b.
Similar to the velocity effect, increasing the viscosity coefficient makes the energy consumption in the

damage zone become more dominant.

5.3. Strain-softening index: m

The shape of the cohesive law is sensitive to the choice of m and a in this model. Larger m implies faster
reduction of cohesive stress in the damage zone. The variations of the length ratio and aspect ratio of the
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cohesive zone are plotted against m in Fig. 11a and b for a ¼ 1, b ¼ 0:002 and V =cs ¼ 0:5. It can be inferred

from Fig. 11a that an increase in m yields a significantly larger length ratio. Considering shrinkage of the

cohesive zone as �ddc, which increases with m as shown in Fig. 11b, the plastic zone size is quite significantly

reduced. As expected, the fracture energy decreases with m in Fig. 12a, and therefore, the material is

vulnerable to damage. In addition, the energy contributed by the plastic zone decreases substantially with
increasing m, as shown in Fig. 12b.

Fig. 13a–c show the m-dependence of �dd, n and �pp along the cohesive zone for the same parameters as Figs.

11 and 12. Clearly, at a specified position f along the damage zone, the normalized opening increases with

m, while the dislocation density or equivalently the opening rate is reduced near the physical crack-tip.

From the cohesive law in the damage zone, with increasing m, this would yield a low cohesive stress at a

specified position f, as shown in Fig. 13c. In addition, it is seen from Fig. 13c that the cohesive strength

decreases with m.
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5.4. Strength ratio: a ¼ rpl=rm

Table 1 lists all global quantities at different a�s for the case of m ¼ 0:5, b ¼ 0:002 and V =cs ¼ 0:5. An

increase in a yields a larger D indicating the importance of the damage zone. It is found that, with
Table 1

Variations of length ratio D, aspect ratio �ddc of the cohesive zone, fracture energy Ef and energy ratio Epl=Ed at various values of a for

m ¼ 0:5, b ¼ 0:002 and V =cs ¼ 0:5

a D �ddc Ef Epl=Ed

0.8 0.231 0.0101 38.36 1.07

0.9 0.286 0.0104 40.95 0.68

1.0 0.343 0.0106 42.75 0.42

1.1 0.399 0.0108 43.94 0.24

1.2 0.449 0.0109 44.67 0.14

1.3 0.489 0.0109 45.08 0.07

1.4 0.542 0.0110 45.41 0.02
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increasing a, the fracture energy Ef increases so that the contribution to the fracture energy from the plastic

zone is greatly reduced. It is noted that the length of the non-linear zone seems insensitive to the change in

a, although a slight increase is found.

In this case, details about the distributions of the normalized opening, its gradient and normal-
ized traction along the cohesive zone are provided in Fig. 14a–c. With increasing a, the opening and its

gradient decrease in the plastic zone, as shown in Fig. 14a and b. At larger a�s, the opening and its gradient

tend to vanish in the leading parts of the plastic zone. From the traction profiles in Fig. 14c, the cohesive

strength still increases with a. However, the normalized cohesive strength increases from around 0.8–1.0

while the normalized plastic ultimate strength a changes significantly from 0.8 to 1.4. Moreover, the co-

hesive strength tends to be steady around 1.0 with further increase in a. Thus, large fracture stress in pure

plastic models, i.e., the plastic ultimate strength in this paper, cannot exist in the presence of the damage

zone.
6. Conclusions

This paper presented a two-region cohesive zone model for simulating plane strain Mode-I steady-state

dynamic crack growth in viscoplastic solids. Such a model, as suggested by Wnuk (1983), includes two

distinct mechanisms: strain-hardening plastic flow and strain-softening damage evolution. From our re-

sults, the energy dissipated in the plastic zone clearly cannot be neglected at low crack speeds and small
values of a and m. The dependence of crack growth behavior on crack speeds and cohesive constitutive

parameters are addressed numerically in this paper. While the model may not capture all features of the

failure of rate-dependent materials, it has provided new insights in the understanding of dynamic crack

growth. Major numerical results and findings are given below.

(a) Crack growth rates can change opening and traction profiles via the velocity effect and rate sensitivity

(viscosity). Fast crack speeds can reduce the lengths of the non-linear zone and the damage zone, but at

the same time, they can increase the cohesive strength and the fracture energy. In addition, more energy
is dissipated in the damage zone with increasing crack speed.

(b) Rate sensitivity (viscosity) is reflected in the effects of crack speeds, especially at high crack growth

rates.

(c) The results of a small damage zone and large cohesive strength close to the physical crack-tip at high

crack growth rates indicate that a critical cohesive stress can be selected as an alternative failure crite-

rion, as stated by Costanzo and Walton (2002). With this extended criterion, it is expected that the for-

bidden range of crack speeds may appear for specified cohesive parameters.

(d) The definition of crack-tip constraint in rate-dependent materials needs further studies with regard to
dynamic growth. Based on the cohesive strength, the increase of crack-tip constraints can be related to

an increase in crack growth rates and rate-sensitivity factors. However, the increase of softening index

in the damage zone can lead to the loss of constraints.

(e) Material parameters like m, n and a that control the cohesive law are affected by microstructural fea-

tures like void sizes. Their physical origins are not completely understood because of a lack of micro-

structural studies. However, these shape parameters play an important role in fracture assessment.

(f) There is a competition between the damage zone and the plastic zone. With increasing crack speeds, the

damage zone consumes more energy. Plastic energy is suppressed by crack speeds and the plastic
zone length is reduced. However, the damage zone can be decreased by a lower plastic ultimate strength.

In addition, even though a large ultimate strength is assigned to the plastic zone, the existence of a

damage zone can lead to the lowering of the cohesive stress below the level of the plastic ultimate

strength.
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